Contents:

<table>
<thead>
<tr>
<th>Indices</th>
<th>Solving quadratic equations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Expanding single brackets</td>
<td>Using the formula</td>
</tr>
<tr>
<td>Expanding double brackets</td>
<td>Completing the square</td>
</tr>
<tr>
<td>Substitution</td>
<td>Rearranging formulae</td>
</tr>
<tr>
<td>Solving equations</td>
<td>Algebraic fractions</td>
</tr>
<tr>
<td>Solving equations from angle probs</td>
<td>Curved graphs</td>
</tr>
<tr>
<td>Finding nth term of a sequence</td>
<td>Graphs of (y = mx + c)</td>
</tr>
<tr>
<td>Simultaneous equations – 2 linear</td>
<td>Graphing inequalities</td>
</tr>
<tr>
<td>Simultaneous equations – 1 of each</td>
<td>Graphing simultaneous equations</td>
</tr>
<tr>
<td>Inequalities</td>
<td>Graphical solutions to equations</td>
</tr>
<tr>
<td>Factorising – common factors</td>
<td>Expressing laws in symbolic form</td>
</tr>
<tr>
<td>Factorising – quadratics</td>
<td>Graphs of related functions</td>
</tr>
<tr>
<td>Factorising – grouping & DOTS</td>
<td>Kinematics</td>
</tr>
</tbody>
</table>
\[a^2 \times a^3 \]
\[F^2 \]
\[(F^2)^4 \]
\[\sqrt{a^4} \]
\[2e^7 \times 3ef^2 \]
\[t^2 \div t^2 \]
\[x^7 \div x^4 \]
\[4xy^3 \div 2xy \]
\[b^1 \]
\[5p^5qr \times 6p^2q^6r \]
Expanding single brackets

Example:

\[4(2a + 3) = 8a + 12 \]

Remember to multiply all the terms inside the bracket by the term immediately in front of the bracket

If there is no term in front of the bracket, multiply by 1 or -1

Expand these brackets and simplify wherever possible:

1. \(3(a - 4) = 3a - 12\)
2. \(6(2c + 5) = 12c + 30\)
3. \(-2(d + g) = -2d - 2g\)
4. \(c(d + 4) = cd + 4c\)
5. \(-5(2a - 3) = -10a + 15\)
6. \(a(a - 6) = a^2 - 6a\)
7. \(4r(2r + 3) = 8r^2 + 12r\)
8. \(- (4a + 2) = -4a - 2\)
9. \(8 - 2(t + 5) = -2t - 2\)
10. \(2(2a + 4) + 4(3a + 6) = 16a + 32\)
11. \(2p(3p + 2) - 5(2p - 1) = 6p^2 - 6p + 5\)
Expanding double brackets

\[(3a + 4)(2a − 5)\]

\[= 3a(2a − 5) + 4(2a − 5)\]

\[= 6a^2 − 15a + 8a − 20\]

\[= 6a^2 − 7a − 20\]

Split the double brackets into 2 single brackets and then expand each bracket and simplify

“3a lots of 2a − 5 and 4 lots of 2a − 5”

If a single bracket is squared \((a + 5)^2\) change it into double brackets \((a + 5)(a + 5)\)

Expand these brackets and simplify:

1. \((c + 2)(c + 6) = c^2 + 8c + 12\)

5. \((c + 7)^2 = c^2 + 14c + 49\)

2. \((2a + 1)(3a − 4) = 6a^2 − 5a − 4\)

6. \((4g − 1)^2 = 16g^2 − 8g + 1\)

3. \((3a − 4)(5a + 7) = 15a^2 + a − 28\)

4. \((p + 2)(7p − 3) = 7p^2 + 11p − 6\)
If $a = 5$, $b = 6$ and $c = 2$ find the value of:

- $3a = 15$
- $c^2 = 4$
- $4b^2 = 144$
- $ac = 10$
- $ab - 2c = 26$
- $c(b - a) = 2$
- $(3a)^2 = 225$
- $a^2 - 3b = 7$
- $\frac{4bc}{a} = 9.6$
- $(5b^3 - ac)^2 = 1144900$

Now find the value of each of these expressions if $a = -8$, $b = 3.7$ and $c = \frac{2}{3}$.
Solving equations

Solve the following equation to find the value of \(x \):

\[
4x + 17 = 7x - 1
\]

\[
17 = 7x - 4x - 1
\]

\[
17 = 3x - 1
\]

\[
17 + 1 = 3x
\]

\[
18 = 3x
\]

\[
\frac{18}{3} = x
\]

\[
x = 6
\]

\(\leftarrow \text{Take 4x from both sides} \)

\(\leftarrow \text{Add 1 to both sides} \)

\(\leftarrow \text{Divide both sides by 3} \)

Now solve these:
1. \(2x + 5 = 17 \)
2. \(5 - x = 2 \)
3. \(3x + 7 = x + 15 \)
4. \(\frac{4(x + 3)}{5} = 20 \)

Some equations cannot be solved in this way and “Trial and Improvement” methods are required.

Find \(x \) to 1 d.p. if:

\[
x^2 + 3x = 200
\]

<table>
<thead>
<tr>
<th>Try</th>
<th>Calculation</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>(x = 10)</td>
<td>((10 \times 10) + (3 \times 10) = 130)</td>
<td>Too low</td>
</tr>
<tr>
<td>(x = 13)</td>
<td>((13 \times 13) + (3 \times 13) = 208)</td>
<td>Too high etc.</td>
</tr>
</tbody>
</table>
Solving equations from angle problems

Find the size of each angle

Rule involved:
Angles in a quad = \(360^\circ\)

\[4y + 2y + y + 150 = 360\]
\[7y + 150 = 360\]
\[7y = 360 - 150\]
\[7y = 210\]
\[y = 210/7\]
\[y = 30^\circ\]

Angles are: \(30^\circ, 60^\circ, 120^\circ, 150^\circ\)

Find the value of v

Rule involved:
“Z” angles are equal

\[4v + 5 = 2v + 39\]
\[4v - 2v + 5 = 39\]
\[2v + 5 = 39\]
\[2v = 39 - 5\]
\[2v = 34\]
\[v = 34/2\]
\[v = 17^\circ\]

Check: \((4 \times 17) + 5 = 73\), \((2 \times 17) + 39 = 73\)
Finding nth term of a simple sequence

Position number (n)

<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>4</td>
<td>6</td>
<td>8</td>
<td>10</td>
<td>12</td>
</tr>
</tbody>
</table>

This sequence is the 2 times table shifted a little

5, 7, 9, 11, 13, 15,

Each term is found by the position number times 2 then add another 3. So the rule for the sequence is

\[n^{th} \text{ term} = 2n + 3 \]

100\(^{th}\) term = \(2 \times 100 + 3 = 203\)

Find the rules of these sequences

1. 1, 3, 5, 7, 9, 2n - 1
2. 6, 8, 10, 12, 2n + 4
3. 3, 8, 13, 18, 5n - 2
4. 20, 26, 32, 38, 6n + 14
5. 7, 14, 21, 28, 7n

And these sequences

1. 1, 4, 9, 16, 25, ... \(n^2\)
2. 3, 6, 11, 18, 27 \(n^2 + 2\)
3. 20, 18, 16, 14, -2n + 22
4. 40, 37, 34, 31, -3n + 43
5. 6, 26, 46, 66, 20n - 14
Finding nth term of a more complex sequence

\[n = 1, 2, 3, 4, 5 \]

\[4, 13, 26, 43, 64, \ldots \]

2nd difference is 4 means that the first term is \(2n^2\)

2nd difference:
\[+9, +13, +17, +21 \]
\[+4, +4, +4 \]

2nd difference:
\[+4, +4, +4 \]

This sequence has a rule \(= 3n - 1\)

What's left:
\[2, 5, 8, 11, 14, \ldots \]

\[\text{So the nth term} = 2n^2 + 3n - 1 \]

Find the rule for these sequences:
(a) 10, 23, 44, 73, 110, ...
(b) 0, 17, 44, 81, 128, ...
(c) 3, 7, 17, 33, 55, ...

\[\rightarrow \text{(a) nth term} = 4n^2 + n + 5 \]

\[\rightarrow \text{(b) nth term} = 5n^2 + 2n - 7 \]

\[\rightarrow \text{(c) nth term} = 3n^2 - 5n + 5 \]
Simultaneous equations – 2 linear equations

1. Multiply the equations up until the second unknowns have the same sized number in front of them

\[
\begin{align*}
4a + 3b &= 17 \\
6a - 2b &= 6
\end{align*}
\]

\[
\begin{align*}
8a + 6b &= 34 \\
18a - 6b &= 18
\end{align*}
\]

2. Eliminate the second unknown by combining the 2 equations using either SSS or SDA

\[
\begin{align*}
26a &= 52 \\
a &= \frac{52}{26} \\
a &= 2
\end{align*}
\]

3. Find the second unknown by substituting back into one of the equations

Put \(a = 2 \) into:

\[
4a + 3b = 17
\]

\[
8 + 3b = 17
\]

\[
3b = 17 - 8
\]

\[
3b = 9
\]

\[
b = 3
\]

So the solutions are: \(a = 2 \) and \(b = 3 \)

Now solve:

\[
\begin{align*}
5p + 4q &= 24 \\
2p + 5q &= 13
\end{align*}
\]
Simultaneous equations – 1 linear and 1 quadratic

Sometimes it is better to use a substitution method rather than the elimination method described on the previous slide.

Follow this method closely to solve this pair of simultaneous equations: \(x^2 + y^2 = 25 \) and \(x + y = 7 \)

Step 1 Rearrange the linear equation: \(x = 7 - y \)

Step 2 Substitute this into the quadratic: \((7 - y)^2 + y^2 = 25 \)

Step 3 Expand brackets, rearrange, factorise and solve:

\[
(7 - y)(7 - y) + y^2 = 25
\]
\[
49 - 14y + y^2 + y^2 = 25
\]
\[
2y^2 - 14y + 49 = 25
\]
\[
2y^2 - 14y + 24 = 0
\]
\[
(2y - 6)(y - 4) = 0
\]
\[
y = 3 \text{ or } y = 4
\]

Step 4 Substitute back in to find other unknown:

- \(y = 3 \) in \(x + y = 7 \) \(\Rightarrow x = 4 \)
- \(y = 4 \) in \(x + y = 7 \) \(\Rightarrow x = 3 \)
Inequalities can be solved in exactly the same way as equations

14 ≤ 2x – 8
14 + 8 ≤ 2x
22 ≤ 2x
22 ≤ x
2
11 ≤ x

x ≥ 11

Add 8 to both sides
Divide both sides by 2
Remember to turn the sign round as well

The difference is that inequalities can be given as a range of results

Here x can be equal to:
11, 12, 13, 14, 15, …

Or on a scale:

Find the range of solutions for these inequalities:

1. 3x + 1 > 4
 X > 1
 or
 X = 2, 3, 4, 5, 6 …

2. 5x – 3 ≤ 12
 X ≤ 3
 or
 X = 3, 2, 1, 0, -1 …

3. 4x + 7 < x + 13
 X < 2
 or
 X = 1, 0, -1, -2, …

4. -6 ≤ 2x + 2 < 10
 -4 ≤ X < 4
 or
 X = -4, -3, -2, -1, 0, 1, 2, 3
Factorising – common factors

Factorising is basically the reverse of expanding brackets. Instead of removing brackets you are putting them in and placing all the common factors in front.

\[5x^2 + 10xy = 5x(x + 2y)\]

Factorise the following (and check by expanding):

1. \[15 - 3x = 3(5 - x)\]
2. \[2a + 10 = 2(a + 5)\]
3. \[ab - 5a = a(b - 5)\]
4. \[a^2 + 6a = a(a + 6)\]
5. \[8x^2 - 4x = 4x(2x - 1)\]
6. \[10pq + 2p = 2p(5q + 1)\]
7. \[20xy - 16x = 4x(5y - 4)\]
8. \[24ab + 16a^2 = 8a(3b + 2a)\]
9. \[\pi r^2 + 2 \pi r = \pi r(r + 2)\]
10. \[3a^2 - 9a^3 = 3a^2(1 - 3a)\]
Factorising – quadratics

Here the factorising is the reverse of expanding double brackets

To help use a 2 x 2 box

Factorise $x^2 - 9x - 22$

Factor pairs of - 22:
-1, 22
-22, 1
-2, 11
-11, 2

Find the pair which add to give - 9

Answer = $(x + 2)(x - 11)$

Factorising

$\textcolor{red}{x^2 + 4x - 21 = (x + 7)(x - 3)}$

Expanding

Factorise the following:

1. $x^2 + 4x + 3 = (x + 3)(x + 1)$
2. $x^2 - 3x + 2 = (x - 2)(x - 1)$
3. $x^2 + 7x - 30 = (x + 10)(x - 3)$
4. $x^2 - 4x - 12 = (x + 2)(x - 6)$
5. $x^2 + 7x + 10 = (x + 2)(x + 5)$
Factorising - quadratics

When quadratics are more difficult to factorise use this method

Factorise $2x^2 + 5x – 3$

Write out the factor pairs of $–6$ (from 2 multiplied $–3$)

-1, 6
-6, 1
-2, 3
-3, 2

Find the pair which add to give $+5$

(-1, 6)

Rewrite as $2x^2 – 1x + 6x – 3$

Factorise in 2 parts $x(2x – 1) + 3(2x – 1)$

Rewrite as double brackets $(x + 3)(2x – 1)$

Now factorise these:
(a) $25t^2 – 20t + 4$
(b) $4y^2 + 12y + 5$
(c) $g^2 – g – 20$
(d) $6x^2 + 11x – 10$
(e) $8t^4 – 2t^2 – 1$

Answers:
(a) $(5t – 2)(5t – 2)$
(b) $(2y + 1)(2y + 5)$
(c) $(g – 5)(g + 4)$
(d) $(3x – 2)(2x + 5)$
(e) $(4t^2 + 1)(2t^2 – 1)$
Factorising – grouping and difference of two squares

Grouping into pairs

<table>
<thead>
<tr>
<th>Expression</th>
<th>Factorisation</th>
</tr>
</thead>
<tbody>
<tr>
<td>$6ab + 9ad - 2bc - 3cd$</td>
<td>Factorise in 2 parts: $3a(2b + 3d) - c(2b + 3d)$</td>
</tr>
<tr>
<td></td>
<td>Rewrite as double brackets: $(3a - c)(2b + 3d)$</td>
</tr>
</tbody>
</table>

Difference of two squares

<table>
<thead>
<tr>
<th>Expression</th>
<th>Factorisation</th>
</tr>
</thead>
<tbody>
<tr>
<td>$4x^2 - 25$</td>
<td>Look for 2 square numbers separated by a minus. Simply use the square root of each and a “+” and a “−” to get: $(2x + 5)(2x - 5)$</td>
</tr>
</tbody>
</table>

Fully factorise these:

<table>
<thead>
<tr>
<th>Expression</th>
<th>Factorisation</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a) $wx + xz + wy + yz$</td>
<td>$(x + y)(w + z)$</td>
</tr>
<tr>
<td>(b) $2wx - 2xz - wy + yz$</td>
<td>$(2x - y)(w - z)$</td>
</tr>
<tr>
<td>(c) $8fh - 20fi + 6gh - 15gi$</td>
<td>$(4f + 3g)(2h - 5i)$</td>
</tr>
</tbody>
</table>

Answers:

<table>
<thead>
<tr>
<th>Expression</th>
<th>Factorisation</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a) $81x^2 - 1$</td>
<td>$(9x + 1)(9x - 1)$</td>
</tr>
<tr>
<td>(b) $\frac{1}{4} - t^2$</td>
<td>$(\frac{1}{2} + t)(\frac{1}{2} - t)$</td>
</tr>
<tr>
<td>(c) $16y^2 + 64$</td>
<td>$16(y^2 + 4)$</td>
</tr>
</tbody>
</table>
Solving quadratic equations (using factorisation)

Solve this equation:

\[x^2 + 5x - 14 = 0 \]
\[(x + 7)(x - 2) = 0 \]
\[x + 7 = 0 \text{ or } x - 2 = 0 \]
\[x = -7 \text{ or } x = 2 \]

\[\leftarrow \text{Factorise first} \]
\[\leftarrow \text{Now make each bracket equal to zero separately} \]
\[\leftarrow \text{2 solutions} \]

Solve these:

1. \(2x^2 + 5x - 3 = 0 \)
 \[(x + 3)(2x - 1) = 0 \]
 \[x = -3 \text{ or } x = 1/2 \]

2. \(x^2 - 7x + 10 = 0 \)
 \[(x - 5)(x - 2) = 0 \]
 \[x = 5 \text{ or } x = 2 \]

3. \(x^2 + 12x + 35 = 0 \)
 \[(x + 7)(x + 5) = 0 \]
 \[x = -7 \text{ or } x = -5 \]

4. \(25t^2 - 20t + 4 = 0 \)
 \[(5t - 2)(5t - 2) = 0 \]
 \[t = 2/5 \]

5. \(x^2 + x - 6 = 0 \)
 \[(x + 3)(x - 2) = 0 \]
 \[x = -3 \text{ or } x = 2 \]

5. \(4x^2 - 64 = 0 \)
 \[(2x - 8)(2x + 8) = 0 \]
 \[x = 4 \text{ or } x = -4 \]
Solving quadratic equations (using the formula)

The generalization of a quadratic equation is: \(ax^2 + bx + c = 0 \)

The following formula works out both solutions to any quadratic equation:

\[
x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}
\]

Solve \(6x^2 + 17x + 12 = 0 \) using the quadratic formula

\(a = 6,\ b = 17,\ c = 12 \)

\[
x = \frac{-17 \pm \sqrt{17^2 - 4 \cdot 6 \cdot 12}}{2 \cdot 6}
\]

\[
x = \frac{-17 \pm \sqrt{289 - 288}}{12}
\]

\[
x = \frac{-17 \pm 1}{12}
\]

or

\[
x = \frac{-17 - 1}{12}
\]

\(x = -1.33.. \) or \(x = -1.5 \)

Now solve these:

1. \(3x^2 + 5x + 1 = 0 \)
2. \(x^2 - x - 10 = 0 \)
3. \(2x^2 + x - 8 = 0 \)
4. \(5x^2 + 2x - 1 = 0 \)
5. \(7x^2 + 12x + 2 = 0 \)
6. \(5x^2 - 10x + 1 = 0 \)

Answers:

(1) -0.23, -1.43 (2) 3.7, -2.7 (3) 1.77, -2.27 (4) 0.29, -0.69 (5) -0.19, -1.53 (6) 1.89, 0.1
Solving quadratic equations (by completing the square)

Another method for solving quadratics relies on the fact that:

\[(x + a)^2 = x^2 + 2ax + a^2\] (e.g. \[(x + 7)^2 = x^2 + 14x + 49\])

Rearranging: \[x^2 + 2ax = (x + a)^2 – a^2\] (e.g. \[x^2 + 14x = (x + 7)^2 – 49\])

Example

Rewrite \[x^2 + 4x – 7\] in the form \[(x + a)^2 – b\]. Hence solve the equation \[x^2 + 4x – 7 = 0\] (1 d.p.)

Step 1 Write the first two terms \[x^2 + 4x\] as a completed square

\[x^2 + 4x = (x + 2)^2 – 4\]

Step 2 Now incorporate the third term – 7 to both sides

\[x^2 + 4x – 7 = (x + 2)^2 – 4 – 7\]

\[x^2 + 4x – 7 = (x + 2)^2 – 11\] (1st part answered)

Step 3 When \[x^2 + 4x – 7 = 0\] then \[(x + 2)^2 – 11 = 0\]

\[(x + 2)^2 = 11\]

\[x + 2 = \pm \sqrt{11}\]

\[x = \pm \sqrt{11} – 2\]

\[x = 1.3 \quad \text{or} \quad x = -5.3\]
Rearranging formulae

Now rearrange these

1. \(P = 4a + 5 \)
2. \(A = \frac{be}{r} \)
3. \(D = g^2 + c \)
4. \(B = e + \sqrt{h} \)
5. \(E = \frac{u - 4v}{d} \)
6. \(Q = 4cp - st \)

Rearrange the following formula so that \(a \) is the subject

\[V = u + at \]

\[a = \frac{V - u}{t} \]

Answers:

1. \(a = \frac{P - 5}{4} \)
2. \(e = Ar \)
3. \(g = \sqrt{D - c} \)
4. \(h = (B - e)^2 \)
5. \(u = d(E + 4v) \)
6. \(p = \frac{Q + st}{4c} \)
Rearranging formulae

When the formula has the new subject in two places (or it appears in two places during manipulation) you will need to factorise at some point.

Now rearrange these:

1. $ab = 3a + 7$
 - $a = \frac{7}{b-3}$

2. $a = \frac{e-h}{e+5}$
 - $e = \frac{-h-5a}{a-1}$

3. $s(t - r) = 2(r - 3)$
 - $r = \frac{st + 6}{2 + s}$

4. $e = \frac{u - 1}{d}$
 - $d = \frac{u}{e + 1}$
Like ordinary fractions, you can only add or subtract algebraic fractions if their denominators are the same.

Show that \(\frac{3}{x+1} + \frac{4}{x} \) can be written as \(\frac{7x + 4}{x(x+1)} \).

\[
\frac{3x}{(x+1)x} + \frac{4(x+1)}{x(x+1)} = \frac{3x}{x(x+1)} + \frac{4x + 4}{x(x+1)} = \frac{3x + 4x + 4}{x(x+1)} = \frac{7x + 4}{x(x+1)}
\]

Multiply the top and bottom of each fraction by the same amount.

Simplify \(\frac{x}{x-1} - \frac{6}{x-4} \).

\[
\frac{x(x-4)}{(x-1)(x-4)} - \frac{6(x-1)}{(x-1)(x-4)} = \frac{x^2 - 4x - 6x + 6}{(x-1)(x-4)} = \frac{x^2 - 10x + 6}{(x-1)(x-4)}
\]
Algebraic fractions – Multiplication and division

Again just use normal fractions principles

Simplify:
\[
\frac{6x}{x^2 + 4x} \div \frac{4x^2}{x^2 + x} = \frac{6x}{x(x + 4)} \times \frac{x(x + 1)}{4x^2} = \frac{3(x + 1)}{2x(x + 4)}
\]

Algebraic fractions – solving equations

Solve: \(\frac{4}{x - 2} + \frac{7}{x + 1} = 2\)

Multiply all by \((x - 2)(x + 1)\)

\[
4(x + 1) + 7(x - 2) = 2(x - 2)(x + 1)
\]

\[
4x + 4 + 7x - 14 = 2(x^2 - 2x + x - 2)
\]

\[
11x - 10 = 2x^2 - 4x + 2x - 4
\]

\[
0 = 2x^2 - 13x + 6
\]

\[
2x^2 - x - 12x + 6 = 0
\]

\[
x(2x - 1) - 6(2x - 1) = 0
\]

\[
(2x - 1)(x - 6) = 0
\]

\[
2x - 1 = 0 \text{ or } x - 6 = 0
\]

\[
x = \frac{1}{2} \text{ or } x = 6
\]
There are four specific types of curved graphs that you may be asked to recognise and draw.

Any curve starting with x^2 is “U” shaped.

Any curve starting with x^3 is this shape.

Any curve with a number /x is this shape.

If you are asked to draw an accurate curved graph (e.g., $y = x^2 + 3x - 1$), simply substitute x values to find y values and the co-ordinates.
Graphs of $y = mx + c$

In the equation:

$y = mx + c$

$m = \text{the gradient (how far up for every one along)}$

$c = \text{the intercept (where the line crosses the y axis)}$
Graphs of \(y = mx + c \)

Write down the equations of these lines:

Answers:
- \(y = x \)
- \(y = x + 2 \)
- \(y = -x + 1 \)
- \(y = -2x + 2 \)
- \(y = 3x + 1 \)
- \(x = 4 \)
- \(y = -3 \)
Find the region that is not covered by these 3 regions:
- $x \leq -2$
- $y \leq x$
- $y > 3$
Graphing simultaneous equations

Finding co-ordinates for $2y + 6x = 12$
using the “cover up” method:
y = 0 → $2y + 6x = 12$ → $x = 2$ → $(2, 0)$
x = 0 → $2y + 6x = 12$ → $y = 6$ → $(0, 6)$

Finding co-ordinates for $y = 2x + 1$
x = 0 → $y = (2 \times 0) + 1$ → $y = 1$ → $(0, 1)$
x = 1 → $y = (2 \times 1) + 1$ → $y = 3$ → $(1, 3)$
x = 2 → $y = (2 \times 2) + 1$ → $y = 5$ → $(2, 5)$

The co-ordinate of the point where the two graphs cross is $(1, 3)$.
Therefore, the solutions to the simultaneous equations are:
$x = 1$ and $y = 3$
Graphical solutions to equations

If an equation equals 0 then its solutions lie at the points where the graph of the equation crosses the x-axis.

e.g. Solve the following equation graphically:

\[x^2 + x - 6 = 0 \]

All you do is plot the equation \(y = x^2 + x - 6 \) and find where it crosses the x-axis (the line \(y=0 \)).

There are two solutions to \(x^2 + x - 6 = 0 \):

\[x = -3 \text{ and } x = 2 \]
Graphical solutions to equations

If the equation does not equal zero:
Draw the graphs for both sides of the equation and where they cross is where the solutions lie

e.g. Solve the following equation graphically:

\[x^2 - 2x - 11 = 9 - x \]

Plot the following equations and find where they cross:

\[y = x^2 - 2x - 11 \]
\[y = 9 - x \]

There are 2 solutions to \[x^2 - 2x - 11 = 9 - x \]
x = -4 and x = 5

Be prepared to solve 2 simultaneous equations graphically where one is linear (e.g. \(x + y = 7 \)) and the other is a circle (e.g. \(x^2 + y^2 = 25 \))
Expressing laws in symbolic form

In the equation \(y = mx + c \), if \(y \) is plotted against \(x \) the gradient of the line is \(m \) and the intercept on the y-axis is \(c \).

Similarly in the equation \(y = mx^2 + c \), if \(y \) is plotted against \(x^2 \) the gradient of the line is \(m \) and the intercept on the y-axis is \(c \).

And in the equation \(y = \frac{m}{\sqrt{x}} + c \), if \(y \) is plotted against \(\frac{1}{\sqrt{x}} \) the gradient of the line is \(m \) and the intercept on the y-axis is \(c \).
Expressing laws in symbolic form

E.g. y and x are known to be connected by the equation $y = \frac{a}{x} + b$. Find a and b if:

<table>
<thead>
<tr>
<th>x</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>y</td>
<td>15</td>
<td>9</td>
<td>7</td>
<td>6</td>
<td>5</td>
</tr>
</tbody>
</table>

Find the 1/x values:

<table>
<thead>
<tr>
<th>1/x</th>
<th>1</th>
<th>0.5</th>
<th>0.33</th>
<th>0.25</th>
<th>0.17</th>
</tr>
</thead>
</table>

Plot y against 1/x

So the equation is:

$y = \frac{12}{x} + 3$
Transformation of graphs – Rule 1

The graph of \(y = - f(x) \) is the reflection of the graph \(y = f(x) \) in the x-axis.
The graph of $y = f(-x)$ is the reflection of the graph $y = f(x)$ in the y-axis.
The graph of \(y = f(x) + a \) is the translation of the graph \(y = f(x) \) vertically by vector \(\begin{bmatrix} 0 \\ a \end{bmatrix} \).
The graph of $y = f(x + a)$ is the translation of the graph $y = f(x)$ horizontally by vector $\begin{bmatrix} -a \\ 0 \end{bmatrix}$.
The graph of $y = kf(x)$ is the stretching of the graph $y = f(x)$ vertically by a factor of k.

Transformation of graphs – Rule 5
The graph of $y = f(kx)$ is the stretching of the graph $y = f(x)$ horizontally by a factor of $\frac{1}{k}$.

Transformation of graphs – Rule 6
Straight Distance/Time graphs

- The gradient of each section is the average speed for that part of the journey.
- The horizontal section means the vehicle has stopped.
- The section with the negative gradient shows the return journey and it will have a positive speed but a negative velocity.
- Remember the rule $S = \frac{D}{T}$.

Straight Velocity/Time graphs

- The gradient of each section is the acceleration for that part of the journey.
- The horizontal section means the vehicle is travelling at a constant velocity.
- The sections with a negative gradient show a deceleration.
- The area under the graph is the distance travelled.
- Remember the rule $A = \frac{V}{T}$.